Reprogramming the topology of the nociceptive circuit in C. elegans reshapes sexual behavior

Lecture / Seminar
Time: 11:00-12:15
Location: Arthur and Rochelle Belfer Building for Biomedical Research
Lecturer: Vladyslava Pechuk
Organizer: Department of Brain Sciences
Details: Dr. Meital Oren Lab
Abstract: The effect of the detailed connectivity of a neural circuit on its function and ... Read more The effect of the detailed connectivity of a neural circuit on its function and the resulting behavior of the organism, is a key question in many neural systems Here, I study the circuit for nociception in C elegans which is composed of the same neurons in the two sexes, that are wired differently I set out to elucidate how the topological design of a compact neuronal circuit affects its behavioral output, how genetic sex affects the connectivity and dynamics of a circuit, and how specific circuit components orchestrate together to establish the behavioral sexual dimorphism I used behavioral assays, optogenetics calcium and glutamate imaging, measurement of protein expression, artificial connectivity, molecular and genetic tools, and show that the nociceptive sensory neurons respond similarly in the two sexes, yet the animals display sexually dimorphic behaviors to the same aversive stimuli To uncover the role of the downstream network topology in shaping behavior, I measured the neuronal activity of a key interneuron, and found dimorphic responses to the stimulus as well as dimorphic intrinsic basal interneuron activity I then showed that neuron specific genetic sex plays a role in shaping connectivity and circuit dynamics, and proceed to an artificial subtle synaptic rewiring which flips behavior between sexes Interestingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that network topologies that enable efficient avoidance of noxious cues have a reproductive " My results present a deconstruction of the design of a neural circuit that controls sexual behavior, and how to reprogram it
Close abstract