Complex biogenic crystals made by unicellular algae are constructed with simple principles

Date:
29
Tuesday
March
2022
Lecture / Seminar
Time: 11:30-12:30
Title: Member Seminar
Location: Nella and Leon Benoziyo Building for Biological Sciences
Lecturer: Emanuel Avrahami
Organizer: Department of Plant and Environmental Sciences
Details: Assaf Gal lab
Abstract: Coccoliths are exoskeletal plates, made of highly complex microscopic calcite (C ... Read more Coccoliths are exoskeletal plates, made of highly complex microscopic calcite (CaCO3) crystals with astonishing morphological variety, produced by unicellular algae called Coccolithophores. For decades, their complexity has made coccolith fabrication and its controls alluring to scientists from different fields. Coccoliths grow intracellularly in a specialized vesicle where they presumably interact with chiral additives in a stereospecific manner. Such specific interactions are thought to give rise to numerous crystallographic faces, that convey ultrastructural chirality and convolutedness. We investigated the large coccoliths of Calcidiscus leptoporus by extracting them from within the cells along their growth, imagining them with various electron microscopy techniques at high resolution, and rendering their 3D structure. Our morphological analysis revealed that as the crystals mature, they transition from isotropic rhombohedra to highly anisotropic shapes, while expressing only a single set of crystallographic faces. This observation profoundly challenges the involvement of chiral modifiers. The crystals’ growth pattern showed that their shape is attained via differential growth rates of symmetry related facets with. Additionally, the rhombohedral geometry of the crystals appears to convey ultrastructural chirality in initial coccolith assembly stages. These findings change our understanding of biological control over complex crystal construction and mechanistically simplify the system in which they emerge.
Close abstract